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Evolution of a neutron population in the presence of 
material is governed by the neutron transport equation.

• When a neutron is incident on a 
material nucleus, three neutron 
events are most common:

[1] capture [2] scatter [3] fission
– likelihood of an event proportional 

to corresponding nuclear cross 
section 

• The neutron transport equation is a 
conservation law for neutron flux that 
depends on nuclear cross sections 
for capture, scattering, and fission

Reproduced from Larsen, NERS 543 Lecture 
notes, Univ. of Michigan (2012) 

[1] capture

[2] scatter

[3] fission
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Neutron scattering is described by an angular 
probability distribution function. 

• In a scattering event, a neutron 
scatters an angle 𝜃 into an outgoing 
trajectory

• Every nuclear isotope has a unique 
scattering distribution derived from 
nuclear scattering cross section

– represented in terms of scattering 
cosine 𝜇   

– azimuthal symmetry → distribution 
functions depend only on scattering 
cosine

1Reproduced from Fratus, PHYS 103 Lecture notes, 
Univ. of California (2015)

Isotropic Scattering Linearly Anisotropic Scattering

1
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Several codes at LANL can determine approximate 
solutions to the neutron transport equation.

• Deterministic codes discretize in 
energy, angle, and time to obtain 
solutions

– multigroup approximation is widely 
used for efficient calculations

– each group-to-group transfer has a 
scattering distribution

• Monte Carlo codes determine 
transport quantities by sampling 
probability distributions

– large number of neutrons are 
evolved using random numbers 

Adapted from Larsen, NERS 543 Lecture 
notes, Univ. of Michigan (2012) 
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Multigroup codes represent scattering distributions in 
terms of Legendre polynomials.

• Legendre polynomials are used to 
represent scattering PDFs because:

– domain [-1,1] is same as scattering 
cosine range

– efficient to only use low-order 
truncations of scattering distribution

• Important: low-order truncations of 
scattering distributions may be 
nonpositive over [-1,1]

– not suitable for Monte Carlo 
sampling!
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Moments of a scattering PDF describe angular 
anisotropy of scattering.

• We seek a non-negative PDF that 
captures the anisotropy of the truncated 
multigroup PDF 

– to capture PDF shape, we can compute 
moments of the distribution function

– moments can be computed directly 
from Legendre coefficients

• Higher order moments capture higher 
order anisotropy
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Using a discrete angle method, particles scatter into 
only a limited number of outgoing angles.

• Discrete angle technique (DAT) 
involves deriving a weighted delta 
function PDF

– Pros: 
• fast sampling
• for high-order truncations, 

anisotropy is well-represented
– Cons:

• low-order truncations may suffer 
from limited angle selection (ray 
effects) 
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For low-order truncations, a semicontinuous scattering 
distribution may best represent angular anisotropy.

• The semicontinuous (SC) method 
involves deriving a PDF that is a 
weighted sum of a continuous 
density and a delta function density

– Pros: 
• weighting 𝛽 of continuous and 

discrete densities can be specified 
• may mitigate low-order ray effects 

possible with DAT
– Cons:

• less efficient sampling
• difficult to generalize 
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SC and DAT methods have been implemented in the 
GPU-enabled neutron transport code MGMC.

• Previously, MGMC used only isotropic 
P0 sampling 

– only a good approximation in limited 
scenarios 

• We implemented SC and DAT 
sampling for P1 and P3 PDFs

– better captures anisotropic neutron 
scattering mechanics 

– can efficiently sample these PDFs on 
CPUs and GPUs 

SCDAT

P3 
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MGMC SC and DAT methods have been verified against 
other LANL codes using k-eigenvalue simulations.

• k-eigenvalue is a measure of 
criticality in a system

– k = 1 critical
– k < 1 subcritical
– k > 1 supercritical

• To verify the SC and DAT methods in 
MGMC, k was computed for three 
critical ICSBEP benchmarks

– results are compared with reference 
multigroup answers from 
deterministic code PARTISN 

Benchmarks:
● IEU-MET-FAST-007 (BIGTEN)
● U233-SOL-THERM-008 
● PU-MET-FAST-006 (FLATTOP)

Simulation parameters:
● 30 groups
● SN = 128
● Particles/batch = 220, 400 batches

fission
leakage, 
capture

simulation 
domain
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MGMC SC and DAT methods have been verified against 
other LANL codes using k-eigenvalue simulations.

U233-SOL-THERM-008 

● 48in diameter unreflected 
Aluminum sphere of 233U 
Nitrate solution

IEU-MET-FAST-007 (BIGTEN)

● Big: 10 metric tons of mixed 
Uranium, 6in thick depleted 
Uranium reflector; 40in axial 
length, 33in diameter

● Ten: 10% average 235U 
enrichment in cylindrical core

PU-MET-FAST-006 (FLATTOP)

● 1.8in diameter 239Pu 
metal alloy surrounded 
by 3.6in diameter 
Ni-coated U reflector SIZE

Reproduced from the ICSBEP Handbook (2015)
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MGMC can replicate deterministic multigroup criticality 
calculations to within statistical significance.

• U233-SOL-THERM-008 simulations showed the best agreement between 
PARTISN and MGMC, likely due to large dimensions

– discrepancies between PARTISN and MGMC decrease as truncation order 
increases for anisotropic scattering

– we do not expect exact agreement between the two codes because higher order 
moments of low-order truncations are different 
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MGMC agrees well with PARTISN; anisotropic scattering 
agreement improves with increasing scattering order.

• PARTISN P0 is a metric for the 
importance of scattering 
anisotropy

• We expect MGMC and PARTISN P0 
values to agree because they use 
the same scattering PDFs

• As the importance of anisotropy 
increases, PARTISN and MGMC 
show more disagreement for P1 
and P3 simulations
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Speedups of 15-25x have been demonstrated with the 
SC method on NVIDIA V100 GPUs.

• To assess performance, particle 
simulation rate can be used.

– computed this rate for 216 - 229 
neutrons per batch, 30 groups, P3 
SC sampling

– tested on Sierra clone node 
• 2 Power9 CPUs, 4 NVIDIA V100 GPUs

• Additional simulations show that SC 
P3 is only about 10% slower than P0 
sampling on GPUs, independent of 
number of groups used.

Parallelization on Sierra clone node
CPU: 4 MPI Processes, 40 OpenMP Threads/Proc
GPU: 4 MPI Processes, 1 NVIDIA Volta GPU/Proc
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Conclusions

• Our problem: Legendre truncations to multigroup scattering distributions are 
not amenable to Monte Carlo sampling due to negative values.
 

• Our work: We have implemented two moment-preserving methods in MGMC 
that 

– capture the shape of the truncation;
– are non-negative over [-1, 1]; and
– can be efficiently sampled on CPUs and GPUs

• Our results:
– MGMC can now simulate neutrons with anisotropic scattering mechanics
– MGMC shows good agreement with LANL production codes PARTISN
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Future Work

• Sampling methods
– Entropy-maximizing method
– 5th order semi-continuous PDFs

• Future verification
– Verifying MGMC’s results over more complex critical benchmarks
– Comparing MGMC simulations with additional neutron transport codes

• Performance
– Profiling MGMC’s performance on GPUs
– Testing performance on A100s
– Experimenting with additional parallelization strategies

Thank you for listening!


